Алюминий

<< Назад

Алюминий. Общие сведения.

Алюминий — химический элемент III группы Периодической системы элементов Д.И. Менделеева. Вследствие высокой химической активности алюминий в природе находится только в связанном виде. По содержанию в земной коре он (в форме его соединений) занимает первое место среди металлов — 8,13 % и третье место после кислорода и кремния. По данным акад. А.Е. Ферсмана, насчитывается более 250 минералов алюминия, которые преимущественно сосредоточены вблизи поверхности земли, и более 40 % из них относится к алюмосиликатам.

Практически единственным методом получения металлического алюминия является электролиз криолитоглиноземного расплава. Основное сырье для этого процесса — глинозем (А12О3) получают различными гидрохимическими методами путем переработки минералов, содержащих соединения алюминия.

Химические свойства. В Периодической системе Д.И. Менделеева порядковый номер алюминия 13, его атомная масса составляет 26,9815 (по углероду 12С) и 26,98974 (по кислороду 16O).

Основным изотопом является 27А1, который устойчив и состоит из 14 нейтронов и 13 протонов. Кроме одного изотопа 26А1, период полураспада которого равен 106 лет, установлено существование еще шести изотопов с массовыми числами 23, 24, 25, 26, 28 и 29 и с малыми периодами полураспада (от 0,13 до 396 с), а также пренебрежимо малой распространенностью в природе (от 2x10-5 до 1,5x10-4 %).

Алюминий трехвалентен, и 13 его электронов распределены на электронных оболочках ls2, 2s2, 2р6, 3s2, 3р1. На внешнем электронном слое М находятся три валентных электрона: два на Зs-орбите с потенциалами ионизации 1800 и 2300 кДж/моль и один на 3p-орбите с потенциалом 574,5 кДж/моль, и поэтому в химических соединениях алюминий обычно трехвалентен (А13+). Так как электрон на p-орбите с ядром атома связан слабее, чем два спаренных электрона на s-орбите, то при определенных условиях, теряя р-электрон, атом алюминия становится одновалентным ионом (А1+), образуя соединения низшей валентности (субсоединения), и еще реже — А12+.

Кристаллическая решетка алюминия — гранецентрированный куб, которая устойчива при температуре от 4 К до точки плавления. В алюминии нет аллотропических превращений, т.е. его строение постоянно. Элементарная ячейка состоит из четырех атомов размером 4,049596x10-10 м; при 25 °С атомный диаметр (кратчайшее расстояние между атомами в решетке) составляет 2,86-10-10 м, а атомный объем 9,999x10-6 м3/г-атом. Примеси в алюминии незначительно влияют на величину параметра решетки.

Алюминий обладает большой химической активностью; энергия образования его соединений с кислородом, серой и углеродом весьма велика. В ряду напряжений он находится среди наиболее электроотрицательных элементов, и его нормальный электродный потенциал равен -1,67 В. В обычных условиях, взаимодействуя с кислородом воздуха, алюминий покрыт тонкой (2-10-5 см), но прочной пленкой оксида алюминия А1203, которая защищает от дальнейшего окисления, что обусловливает его высокую коррозионную стойкость. Однако при наличии в алюминии или окружающей среде Hg, Na, Mg, Ca, Si, Си и некоторых других элементов прочность оксидной пленки и ее защитные свойства резко снижаются.

Расплавленный алюминий активно реагирует с оксидом и диоксидом углерода и парами воды. Наибольший интерес представляет растворимость водорода в алюминии, так как присутствие водорода в металле негативно влияет на механические свойства алюминия и его сплавов. Водород в алюминии в количествах, превосходящих растворимость в твердом состоянии, рассматривается как вредная примесь.

Алюминий обладает амфотерными свойствами, т.е. реагируя с кислотами, образует соответствующие соли, а при взаимодействии с щелочами — алюминаты. Эта особенность существенно расширяет возможности извлечения алюминия из руд различного состава. Алюминий растворяется в серной и соляной кислотах, а также в щелочах, но концентрированная азотная и органическая кислоты на алюминий не действуют.

Алюминий широко представлен в земной коре различными соединениями, которые делятся по количеству видов примерно на две равные группы:

  • первичные минералы, образующиеся при кристаллизации магмы и ее производных. Главная роль в этой группе принадлежит алюмосиликатам, типичными представителями которых являются ортоклаз, альбит, лейцит и нефелин. Менее распространены силикаты алюминия — дистен, силлиманит, андалузит. Относительно редкими являются шпинели и свободный оксид алюминия — корунд;
  • вторичные соединения алюминия, образующиеся под воздействием выветривания в земной коре, характеризуются более высоким содержанием оксида алюминия Среди них широко распространены гидросиликаты алюминия — каолинит и его разновидности, а также гидроксиды и оксигидроксиды алюминия — гиббсит, бемит и диаспор, которые являются важнейшей составной частью основных промышленных алюминиевых руд — бокситов. К этой же группе относится и алунит.

К основным алюминиевым рудам относятся бокситы, нефелины, алуниты и некоторые другие соединения, но важнейшей рудой являются бокситы, на которых практически полностью работают все зарубежные глиноземные заводы. Боксит — сложная горная порода, состоящая из оксидов и гидроксидов Al, Fe, Si и Ti и в качестве примесей присутствуют карбонаты кальция и магния, гидросиликаты (хлориты), сульфиды и сульфаты (в первую очередь, железа) и органические соединения. Основными глиноземосодержащими минералами бокситов являются гиббсит, бемит и диаспор. В природе мономинеральные бокситы чрезвычайно редки, гораздо чаще встречаются руды смешанного типа — гиббсит-бемитовые или бемит-диаспоровые.

Качество бокситов в основном определяется содержанием в них А12О3 и SiO2, и для оценки их качества на практике используют кремниевый модуль mSi — массовое отношение содержания А12О3 к SiO2. Чем больше модуль, тем выше качество боксита.

Области применения алюминиевых сплавов.

Сплавы АД и АД-1. Элементы конструкций и деталей, не несущие нагрузки и требующие применения материала с высокими пластическими свойствами, хорошей свариваемостью, высоким сопротивлением коррозии и высокой тепло- и электропронодностью.

Из этих сплавов изготавливаются трубопроводы разного назначения, витражи, перегородки в комнатах, электропровода, двери, оконные рамы,
корпусы часов, ювелирные поделки, палубные надстройки морских и речных судов, обои, обертки, баки и т. д.

Алюминиевые сплавы применяются также в виде заклепок для средненагружаемых конструкций из алюминиевых сплавов с повышенной коррозионной стойкостью и для конструкций из магниевых сплавов.

Сплав АМц. Сварные детали, трубопроводы, емкости для жидкостей и другие малонагружаемые детали и изделия; изделия, изготовляемые глубокой вытяжкой, гибкой и т. д., а также проволока для заклепок.

Заклепки для средненагружаемых конструкций из алюминиевых сплавом с повышенной коррозионной стойкостью и для конструкций из магниевых
сплавов.

Сплав АМг2. Сварные и клепаные детали, трубопроводы разного на значения, емкости для жидкостей и другие средне- и малонагружаемые детали и изделия. Также изготовляются витражи, перегородки в комнатах, электропровода, двери, оконные рамы, корпусы часов, палубные надстройки морских и речных судов, обои, обертки, баки и т. д.

Проволока применяется в качестве присадочного материала и для изготовления заклепок.

Сплав АМгЗ. Сварные малонагружаемые детали и конструкции, с высокой коррозионной стойкостью, трубопроводы, емкости для жидкостей и другие средне-нагружаемые детали и изделия.

Сплавы АМг5, АМг5В и АМг6. Сварные и клепаные средненагружаемые детали и конструкции, требующие высокой коррозионной стойкости; трубопроводы, емкости для жидкостей и другие детали и изделия.

Сплавы Д16 и Д16П. В конструкциях средней и повышенной прочности, Требующих повышенной долговечности при переменных нагрузках; в строительных конструкциях, не требующих высокой коррозионной стойкости, для изготовления ферм, а также для различных высоконагружаемых деталей и элементов-конструкций, за исключением штамповок и поковок. В сильно нагружаемых т-талях сплав Д16 заменяется сплавом В95. Заклепки ставятся в конструкцию и свсжезакаленном состоянии (не позднее 20-30 мин после закалки). Ставится в конструкциях, работающих при температуре до 250° С.

Сплавы АД31 и АД3З. Применяются для клееных и клепаных конструкций сложной формы, а также для конструкций, где требуется повышенный предел текучести, и для прессованных изделий сложной формы (полые профили).

Сплавы АК4 и АК4-1. Лопатки компрессоров, крыльчатки, диски и кольца турбореактивных и турбовинтовых двигателей, поршни двигателей и другие кованные детали, работающие при повышенных температурах.

Сплавы АК6 и АК6-1. Штампованные и кованые детали сложной формы и средней прочности (крыльчатки большие и малые, подмоторные рамы, фитинги, качалки, крепежные детали).

Сплав АК8. Высоконагружаемые штампованные и кованые детали, подмоторные рамы, стыковые узлы, пояса лонжеронов. Трудности, связанные с горячей обработкой давлением, ограничивают применение этого сплава.

Сплавы В95 и В95-1. Нагружаемые конструкции, работающие длительное время при температурах не выше 100-120° С. Обшивка, стрингеры, шпангоуты, лонжероны самолетов, силовой каркас клепаных строительных сооружений. Из сплава В95-1 изготовляются штампованные лопасти.

<< Назад